资源名称:相关性搜索 利用Solr与Elasticsearch创建智能应用 完整pdf

第1章 搜索的相关性问题
1.1 我们的目标:掌握相关性技术研发的技能
1.2 为什么搜索的相关性如此之难
1.2.1 什么是具备“相关性”的搜索结果
1.2.2 搜索:没有银弹
1.3 来自相关性研究的启示
1.3.1 信息检索
1.3.2 能否利用信息检索解决相关性问题
1.4 如何解决相关性
1.5 不只是技术:管理、协作与反馈
1.6 本章小结
第2章 搜索—幕后揭秘
2.1 搜索101
2.1.1 什么是搜索文档
2.1.2 对内容进行搜索
2.1.3 通过搜索来探索内容
2.1.4 获取进入搜索引擎的内容
2.2 搜索引擎的数据结构
2.2.1 倒排索引
2.2.2 倒排索引的其他内容
2.3 对内容进行索引:提取、充实、分析和索引
2.3.1 将内容提取为文档
2.3.2 充实文档以清理、强化与合并数据
2.3.3 执行分析
2.3.4 索引
2.4 文档的搜索和获取
2.4.1 布尔搜索: AND/OR/NOT
2.4.2 基于 Lucene搜索的布尔查询(MUST/MUST_NOT/SHOULD)
2.4.3 位置和短语匹配
2.4.4 助力用户浏览:过滤、切面和聚合
2.4.5 排序、结果排名,以及相关性
2.5 本章小结
第3章 调试我们的第一个相关性问题
3.1 Solr和Elasticsearch的应用:基于Elasticsearch的例子
3.2 最了不起的数据集:TMDB
3.3 用Python语言编写的例子
3.4 第一个搜索应用
3.4.1 针对 TMDB Elasticsearch索引的第一次搜索
3.5 调试查询匹配
3.5.1 检查底层查询策略
3.5.2 剖析查询解析
3.5.3 调试分析,解决匹配问题
3.5.4 比较查询条件和倒排索引
3.5.5 通过修改分析器来修正我们的匹配
3.6 调试排名
3.6.1 利用 Lucene的解释功能来剖析相关性评价
3.6.2 向量空间模型、相关性解释信息和我们
3.6.3 向量空间模型在实践中的注意事项
3.6.4 通过对匹配的评价来度量相关性
3.6.5 用 TF×IDF计算权重
3.6.6 谎言、该死的谎言和相似度
3.6.7 决定搜索词重要性的因素
3.6.8 解决 Space Jam和 alien的排名问题
3.7 问题解决了?工作永远做不完!
3.8 本章小结

……..


资源截图:

image.png

资源下载资源下载价格6立即支付    升级VIP后免费
本站严重申明:本站创建于香港,主要分享电脑技术以及服务于精简系统爱好者,本站遵守香港的法律法规,并且受到香港法律的保护;本站收集的资源仅供内部学习研究软件设计思想和原理使用,学习研究后请自觉删除,请勿传播,因未及时删除所造成的任何后果责任自负; 如果用于其他用途,请购买正版支持作者,谢谢!若您认为本站发布的内容若侵犯到您的权益,请联系站长QQ:304906607 进行删除处理。 本站资源大多存储在云盘,如发现链接失效,请联系我们,我们会第一时间更新。如要升级VIP会员,请联系QQ:304906607 本站资源售价只是赞助,收取费用仅维持本站的日常运营所需!资源仅供学习参考请勿商用或其它非法用途,否则一切后果用户自负!